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We study generic piecewise linear hyperbolic automorphisms of the 2-torus. We 
explain why the resulting dynamical system is ergodic and mixing and prove the 
exponential decay of correlations. 
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1. I N T R O D U C T I O N  

Two distinct classes of hyperbolic dynamical systems with singularities 
have attracted attention in the last two to three decades. One of them is the 
class of piecewise smooth maps of the interval. We only mention the main 
results in this area: the construction of an absolutely continuous invariant 
measure, the proof of ergodicity, exactness, and an exponential decay of 
correlations. 

Another interesting class is that of billiard systems with hyperbolic 
behavior. These systems are also proven to be ergodic, mixing, K- and 
B-systems. (22'23'~3) However, only a subexponential bound for the decay of 
correlations has been established here. r 

There is a deep analogy between these two classes of dynamical 
systems. Both have a dual nature: the hyperbolicity leads to exponential 
instability, but the singularities eventually destroy it. Nonetheless, the 
hyperbolicity in both cases overcomes the influence of singularities, yielding 
those ergodic and statistical properties of the systems. The only disturbing 
inequality between the stochastic properties of these two classes is that the 
correlations seem to decay more slowly in billiards than in one-dimensional 
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maps. Certain numerical experiments (1'9'25) confirm this conjecture, too. 
Attempts at qualitative explanations of the phenomenon in question have 
been made in refs. 12 and 25. Naturally, the slower decay of correlations 
was ascribed there to the influence of singularities. 

However, the actual rate of the decay of correlations in billiards 
(exponential or subexpotential) is still unknown. This paper will shed more 
light on this problem. We will show that correlations in systems which are 
very close to billiards do decay exponentially fast. The hyperbolic proper- 
ties of our systems are somewhat stronger than those of billiards, but the 
influence of singularities here seems to be the same. We hope our results 
can be extended to billiards, as well as to billiard-like Hamiltonian systems 
considered in refs. 11 and 26 (see also references given there). We also note 
that a recent numerical experiment (14) has revealed an exponential decay of 
correlations in a dispersing billiard system. If our conjecture fails, this 
would mean that the slower decay of correlations in billiards must be 
understood as a result of nonuniform hyperbolicity combined with specific 
singularities, and not as an effect of singularities alone. 

The systems considered here have never been studied before, except for 
a particular case treated in a recent work (24) and some illustrative examples 
in ref. 19. Therefore we start with a short description of their hyperbolic 
and ergodic properties, including certain elements of Markov partitions. 
Then we will focus on the proof of the exponential decay of correlations. 

2. DEFINIT ION OF THE SYSTEM 

Let M be the standard 2-torus associated with the unit square 
K = [-0, 1) x [0, 1). Let To be a linear map of the plane defined by a 2 x 2 
matrix A with det A = ___1 and whose eigenvalues are real and not equal to 
_+ 1. For  instance, 

with k > 0 

Denote A > I  and 2 = A  1<1 the moduli of the eigenvalues of A. The 
image ToK is then a parallelogram with a unit area. 

Now let us cut the parallelogram ToK along several compact smooth 
curves which are either closed or have common endpoints. These curves 
divide the parallelogram into several pieces (domains). We assume that 
these pieces can be shifted and put together in such a way that they will 
make the square K again. As a result we obtain a piecewise linear trans- 
formation T of the torus M. We emphasize that only translations of the 
above parts of ToK are admitted, while any distortion or rotation is 
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prohibited. Certain generic conditions will be imposed on these cuttings 
below. 

For  example, let the matrix A have integer entries, like A 1 above. The 
projection of ToK onto K then defines a smooth linear transformation of 
the torus. Now we can cut the torus into several horizontal strips (Fig. 1) 
and then shift each strip by the rule (x, y ) -*  (x + a, y) (mod 1), where a 
depends on the strip. As another example, consider the above matrix A2 
with noninteger k. The projection of ToK onto K now specifies a one-to- 
one piecewise linear discontinuous map of the torus M called the sawtooth 
map. In that case we do not need any more, artificial, cuttings. This last 
example has been studied in detail in ref. 24. 

Clearly, the map T of the torus M preserves the Lebesgue measure and 
is one-to-one almost everywhere. Denote by S+ and S the union of the 
discontinuity curves for the maps T-1 and T, respectively. For  any positive 
integer n set S n = T n - I S +  and S n = T  n+ls ; also set S o = ~ .  For 
rn<~n set Sm.~=Sn, m = S m w  ... wSn.  Clearly, T n (T n) is undefined and 
discontinuous on S n ( S j .  All the iterates of T are well defined on the 
subset Mo = M \ S  ~,~ of the full measure. We call the union S =  S+ w S 
the singularity set. 

Each point x e M o  has two Lyapunov exponents Zl = l n A  > 0  and 
Z2 = In 2 < 0. The corresponding invariant subspaces Ex ~ and (and E2) are 
all parallel. We denote by E ~ (E s) the eigenspace of A which is parallel to 
all E~ (resp. E2). The rate of expansion of E~ (and the rate of contraction 
of E~) is constant throughout Mo: IIDrvl[ = A Ilvl[ for v eE~ and []Drvl[ = 
,~ Ilvll for v ~ E2 at any point x e Mo. These are very strong hyperbolic 
properties which distinguish our systems from billiards. 

Fig. 1. An example of discontinuous torn automorphism. 
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According to Pesin's theory (21) (for systems with singularities see 
ref. 16) almost every point x e M has a local unstable manifold (LUM) 7U(x) 
and a local stable manifold (LSM)7"(x),  both passing through x. In our 
systems all LUMs are parallel rectilinear segments as are all LSMs. Due to 
the singularities these segments have a finite length, and there are plenty 
of arbitrary short LUMs and LSMs throughout M. Some points x s M0 
(forming a set of null measure) do not even have an LUM 7U(x) or an 
LSM 7S(x) (or both). In this respect the situation here is the same as in 
billiards with hyperbolic behavior. 

3. ERGODIC  PROPERTIES 

Recall that the singularity set S is a finite union of compact smooth 
curves in M. We now assume additional properties of S: 

Property S1 (Double singularity). The intersection SmC~Sn for 
m r n is always a finite set of isolated points. 

Property $2 (Weak regularity of singularities). The set of points 
x E S at with the tangent vector to S is parallel to E u or to E ~ has zero 
length. 

We will also assume a stronger version of the latter property: 

Property  $3 (Strong regularity of singularities). The tangent 
vectors to the curves in S, including those at their endpoints, are nowhere 
parallel to E s or to E". 

Property $3 implies that the angles between E" (E ~) and the tangent 
vectors to the curves in S are bounded away from zero. In that case we 
denote by ~min the corresponding lower bound. 

Theorem 3.1 (Ergodicity). The mapping T with the properties S1 
and $2 are ergodic, mixing, and have the K-property. 

Assume for the moment the property $3 instead of $2. Then the proof 
of Theorem 3.1 is exactly the same as in billiards and similar Hamiltonian 
systems. (23'17'11'2~ This proof has been carried out in full detail in refs. 19 
and 24 for particular cases such as the sawtooth map. The extension of this 
theorem to the case when the property $3 is replaced by $2 has been 
obtained in ref. 10. We also conjecture that our systems are Bernoulli, as 
was shown in ref. 24 for the sawtooth map. 

Corollary 3.2. The mappings Twi th  the properties S1 and $2 have 
countable Lebesgue spectrum. 
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T h e o r e m  3.3 (Entropy). The measure-theoretic entropy of the 
transformation T with the properties S1 and $2 is given by h(T)= in A. 

This theorem follows from Pesin's formula(2~); see also ref. 16 for 
systems with singularities. 

In addition, an estimate of the length distribution of LUMs and LSMs 
can be deduced in the same manner as in refs. 23, 17, and 7. For every 
x e M denote by rU(x) [rS(x)] the distance from x to the nearest endpoint 
of 7U(x) [resp. 7S(x)]. 

Proposition 3.4 (Distribution of the lengths of LUMs and LSMs). 
There is a constant C > 0 such that re{x: rU"(x) < ~ } <~ Ce. 

Here and henceforth m denotes the Lebesgue measure in M. 

4. E L E M E N T S  OF M A R K O V  P A R T I T I O N S  

The mixing property of T means that m(TnA ~B)--*m(A)re(B) as 
n --* oe for every two measurable subsets A, B c M. The rate of the decay 
of correlations corresponds, roughly speaking, to the rate at which the 
difference m(TnAc~B)--m(A)m(B) converges to zero (i.e., the rate of 
mixing). To facilitate estimation of that rate, one could restrict oneself to 
special sets A, B whose evolution under T n is easy to control. One can 
easily control the evolution of LUMs in the past and that of LSMs in the 
future. It would thus be reasonable to construct the set A, B out of LUMs 
and LSMs. 

Definit ion. A parallelogram is a subset A c M such that for any 
two points x, y e A  the point z =TU(x)c~7S(y) exists and again belongs 
to A. 

The reason why z may not exist is that there are arbitrary short LUMs 
and LSMs in M. But if it does exist, it is unique, provided the LUMs and 
LSMs are not too long. We will always assume that this is the case 
(otherwise we could introduce some more, artificial, cuttings in M which 
would reduce the maximal length of the LUMs and LSMs). 

Any parallelogram A is a Cantor set with a grid structure. We denote 
~iS(x)=Tu"(x)c~A for every x. The sets 7~(x) [and ~ ( x ) ]  for all x e A  
are congruent; therefore 

m(A ) = comi(7~ (x) ) m1(7~ (x)) (4.1) 

for every x e A; here ml stands for the one-dimensional Lebesgue measure 
on the corresponding LUMs and LSMs and Co is a normalizing factor. 

Evidently, the image TnA of a parallelogram A is a finite union of 
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parallelograms. Consequently, the intersection T"A c~ B is again a finite 
union of parallelograms; here B is another parallelogram. We say that a 
subparallelogram C c  A is u-inscribed (s-inscribed) in A if 7~(x) = 7] (x)  
[resp. 7 ~ ( x ) =  7~(x)]  for every x~  C. For  any pair of parallelograms A, B 
and n > 0 we say that the intersection T n A n  B is regular if it consists of 
parallelograms u-inscribed in B and its preimage A n T nB consists of 
parallelograms s-inscribed in A. Likewise, for n < 0  the intersection 
T"A n B is said to be regular if it consists of parallelograms s-inscribed in 
B and its preimage A n T - " B  consists of parallelograms u-inscribed in A. 

D e f i n i t i o n .  The Markov partition for T is a countable partition 
(mod 0) of the torus M into parallelograms {A1, A2,... } such that the inter- 
section T"Ai c~ Aj is regular for any pair A i, Aj and any n ~ 0. 

Note that there are no finite partitions of M into parallelograms, 
because of the presence of arbitrary short LUMs and LSMs. 

The construction of the Markov partitions elaborated in refs. 4 and 7 
requires the properties S1 and $3 and one extra property of the set S: 

Property $4 (Bounds for multiple singularities). For every m>~ 1 
the number of smooth components of S m.m meeting at a single point of 
M cannot exceed Kom, where Ko = const. 

Remark. In fact, any polynomial bound Ko mp, p~> 1, is sufficient 
here. 

T h e o r e m  4.1 (Markov partitions). If the transformation T has the 
properties S1, $3, and $4, then for any e > 0 there is a Markov partition 
for T whose elements have diameters less then e. 

The construction of the Markov partitions for T goes the same way as 
for billiards; see refs. 4 and 6 and the improved version in ref. 7. 

It is well known that the Markov partition provides us with a sym- 
bolic representation of the dynamical system in the form of a topological 
Markov chain (TMC) which has in our case a countable number of 
states. (4'7) It is also easy to see that the Lebesgue measure in M induces a 
probability measure in that TMC which makes the TMC a probabilistic 
Markov chain. Due to the mixing property of T, that chain is recurrent, 
noncyclic, and ergodic. Unfortunately, this is not enough to ensure an 
exponential decay of correlations (it is enough only for finite-state ergodic 
Markov chains~2)). One needs to impose more conditions on a countable 
Markov chain to provide an exponential decay of correlations, like the 
classic Doeblin condition ~4) or the Ibragimov regularity, ~ etc. These 
conditions apparently fail in our systems. Therefore, to estimate the decay 



Piecewise Linear Hyperbolic Automorphisms of 2-Torus 117 

of correlations here, we should invoke the methods of these classical works 
rather than the theorems proven there. 

If was first noted in ref. 8 that those methods do not require a 
complete Markov structure of the probabilistic (or symbolic) chain in use. 
Actually, they need only an approximation of this Markov chain by a finite- 
state chain. It was also noted in ref. 8 that the approximating chain can be 
constructed directly via a special (finite) partition of the phase space which 
the authors called the Markov sieve. That  sieve turned out to be much 
easier to construct than the Markov partition itself. Here we use this 
idea again, and we actually construct a Markov sieve which is even simpler 
than in ref. 8. Surprisingly, it gives us a better estimate for the decay of 
correlations than in ref. 8. 

Our Markov sieve is, as in ref. 8, defined through elements of the 
pre-Markov partitions which have been introduced in refs. 4 and 7 as inter- 
mediate objects in the construction of the Markov ones. Roughly speaking, 
elements of pre-Markov partitions serve as frames for parallelograms 
belonging to the Markov partition. 

D e f i n i t i o n .  Any domain Q in M bounded by two LUMs and two 
LSMs is called the quadrilateral. Its boundary c~Q consists of two LUMs 
called the u-sides of Q and two LSMs called the s-sides of  Q. The union 
of two u-sides is denoted by t?"Q and that of two s-sides by OSQ. 

Remark. Actually, our quadrilaterals look like parallelograms in the 
usual sense, but we prefer to follow certain traditions is terminology. (4-8~ 

Fix a sufficiently large m >~ 1 and let e > 0 be an arbitrary small real 
[e < co(m)]. A pre-Markov partition for the map T m is a finite partition 
4o = ~o(e) of M into curvilinear polygons P~,..., Pk with the following 
properties: 

P r o p e r t y  P1. The boundary 0~o = U ~Pi is the union of S m , m  and 
a finite collection of LUMs and LSMs. Respectively, we denote 0~0 = 
~?~ o w ~?"~o w ~=~o, where t?~ = S . . . . . .  and #"~o (0=~o) consists of LUMs 
(LSMs). 

Property P2. Tm(t~S~o ) c__ 0=~o and T-m(~U~o) ~ 0"~0. 

Property P3. All the interior angles of the polygons P ~  ~o formed 
by LUMs and LSMs are less than ~. 

Property P4. The sides of the polygons P E Go lying on LUMs and 
LSMs are greater than c~e but less than e28 (here cl, c2 are constants 
determined by the value of m). 

The properties P1-P4 immediately imply two others: 
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Property P5.  If a polygon P~s~o does not touch the set S . . . . .  
then it is a quadrilateral. 

Property P6.  The union of all polygons P ;e  ~o adjacent to S . . . .  

has the measure less than e3e (here c3 is another constant determined 
by m). 

In other words, ~o is a partition of M into quadrilaterals everywhere 
except for a vicinity of the singularity set S . . . .  whose measure is less than 
const �9 e. 

The pre-Markov partitions for billiard dynamical systems were 
constructed in ref. 4 and 7 and those methods apply as well to our systems. 
However, for the sake of completeness we describe briefly the construction 
of ~o in Appendix C. 

Starting with a pre-Markov partition ~o--~o(e) for T m, we obtain a 
pre-Markov partition for T by ~1=~1(e)=(o  v T~o v -.- v T m l( o. It 
also has the properties P1-P6 (maybe with some other values of cl, c2, c3), 
but now we have T(~'~I) ~ U~I and T-l(c3u~1 ) -- (~U~l. 

The rest of this section is devoted to a preliminary discussion of the 
evolution of elements of a pre-Markov partition. 

Let Q~ and Q2 be two arbitrary quadrilaterals. The intersection 
T"Qlc~Q2 is a f ini te  union of curvilinear polygons of three types: 
(i) quadrilaterals whose u-sides lie on the images of u-sides of Q~ and 
whose s-sides lie one s-sides of Q2; (ii) quadrilaterals with either a u-side 
within TnQI or an s-side within Q2; (ii) polygons adjacent to SL,. The 
union of quadrilaterals of type (i) is called the regular part of TnQI c~ Q2 
and is denoted by ~I(T"Q~ c~ Q2), while the union of polygons of types (ii) 
and (iii) is called the irregular part of T"Q~c~Q2 and is denoted by 
J(T"Q~ n Q2). Dual notions are introduced for T"Q~ c~ Q2 with n ~< -1 .  

Remark. There are at most four quadrilaterals of type (ii). Further- 
more, if Q1 and Q2 are elements of a pre-Markov partition ~1, then due to 
Property P2 (with m =  1) quadrilaterals of type (ii) in T"Qlc~Q2 never 
O c c u r .  

Similarly, for any two parallelograms A 1, A 2 and n >~ 1 the intersection 
TnAlc~A2 is a finite union of parallelograms. The union of those 
u-inscribed in A2 and such that their images under T -n are s-inscribed in 
A1 is called the regular part of the intersection T"A1 c~A2 and is denoted 
~(T"A1 c~ A2), while the union of the others is called the irregular part of 
that intersection and is denoted by J(T"AI c~A2). Again, dual notations 
are introduced for T"A1 c~A2 with n~< -1 .  

Certain relations between quadrilaterals and parallelograms are 
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established by the following considerations (we note that all of these have 
been already used in ref. 8). 

Defini t ion.  For any parallelogram A the minimal closed quadri- 
lateral containing A is called the support of A and is denoted by K(A). 

Defini t ion.  We say that a segment ofa LUM (LSM) is inscribed in 
a quadrilateral Q if it lies within Q and terminates on two s-sides (u-sides) 
of Q. 

Defini t ion.  A parallelogram A is said to be maximal if it intersects 
all the LUMs and LSMs inscribed in its support K(A). 

In other words, to construct a maximal parallelogram one should take 
a quadrilateral Q, and draw all the LUMs and LSMs inscribed in Q; thus, 
the maximal parallelogram would consist of the points of intersections of 
these LUMs and LSMs. The parallelogram so obtained is denoted by 
A(Q). The following is straightforward: 

Lemma 4.2. Let A1,A 2 be two maximal parallelograms and 
QI=K(AI),  Q2=K(A2) be their supports. Then ~(TnAlc~A2)c 
~(TnQ1 c~ Q2) and J(TnA1 c~ A2) c J(TnQ1 c~ Q2). 

5. D E C A Y  OF C O R R E L A T I O N S  

We consider the space of complex-valued H61der continuous functions 
H, = {f: j f ( x ) - f ( y ) f  ~ C f l x - y l  ~ for any x, y e M}. More generally, let 
H* denote the space of piecewise H61der continuous functions, which are 
H61der continuous (with an exponent ~) on a finite collection of sub- 
domains in M separated by a finite union of compact smooth curves (for 
example, the domains where the maps T +-m are continuous, m/> 1 is fixed). 
Note that the curves and domains here must be fixed for the class H* 
under considerations. 

Theorem 5.1. (Decay of correlations). Let the map T have the 
properties S1, $3, and $4. Then for any two functions f ,  g ~ H* and any 
n~>l 

I(f(T"x) g(x) ) - ( f ( x )  )(g(x)  )l <~ C(f  g)it; 

where 2o ~ (0, 1) is a constant determined by T and c~. 

From here on ( . )  denotes the integral over M with respect to the 
measure m. 

Our method for estimating the decay of correlations differs substan- 
tially from those developed for one-dimensional maps. (See, e.g., ref. 27.) 
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While the main idea of those methods consists in analyzing the spectral 
properties of the associated operator in the function space, our approach 
is more straightforward. We deduce Theorem 5.1 from certain measure- 
theoretic properties of our dynamical system, like exponential mixing for a 
selected collection of parallelograms. These properties are then proven with 
the help of the pre-Markov partition. Nonetheless, certain analogies 
between two approaches can also be observed; see below. 

For any n>~ 1 let G =  Gn= {Ao, A1,..., A1} be a finite partition of M 
with two properties: 

P r o p e r t y  G1 (Sizes). The diameters of the elements AiEG for 
i -  1, 2,..., I do not exceed C121. 

PropertyG2 (Measure of marginal set). m(Ao) ~ c12nl, 

Here C1 > 0  and 21 ~ (0, 1) are constants to be specified below. 
For each Ai~ G and f ~  H* denote fi = (m(Ai)) -1 ~Aif(x) dm(x) and 

I 

7(x) = Z f," zA,(x) 
i - - 0  

where ZA stands for the characteristic function of A. In other words, j~(x) 
is the conditional expectation of f (x)  with resxpeet to the partition G. 

If an A~, i~> 1, lies wholly within a domain where f (x)  is continuous, 
then the variation of f (x)  on Ai does not exceed C(f)2~". Hence one can 
write 

I 

( f(T"x) g(x) )= (7(T"x) ~,(x) ) + A~ = Z figjm(Ai~ TnAj) + A2 
i , j =  1 

where [Apt ~ C(f, g)2~" for p = 1, 2. 
Assume now an additional property of G: 

P r o p e r t y  G3 (Exponential mixing for parallelograms in G). For any 
n/> 1 and i, j ~ { 1, 2 ..... I} one has m(A~ c~ T"A:) >~ m(Ai) m(Aj)(1 - C1 ~). 

For any two real-valued positive functions f, g we now obtain from G3 

( f(T"x) g(x) ) >~ ( f (x )  )(g(x)  ) + A3 (5.1) 

with some [A3[ <. C(f, g)2~l". Substituting f (x)  + C1 for f (x)  and g(x) + C2 
for g(x), C1 and C 2 being arbitrary real constants, yields the inequality 
(5.1) for any two real-valued functions f, g~ H*. Switching the sign ofg(x) 
reverses the inequality of (5.1) and thus completes the proof of Theorem 5.1 
for real-valued functions f and g. The extension to complex-valued func- 
tions is obvious. 
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Remark. From the above calculations it follows that 20 in 
Theorem 5.1 can be chosen as 2~, where 21 is independent of c~. Further- 
more, we can set C(fg)=(Ci+MF)(Cg+Mg).Const ,  where C s is the 
factor in the H61der condition and MF=maxMlf(x)l ,  and const is 
independent of f,  g. For the class Ha instead of H *  one can omit Mr, Mg 
in the last estimate. 

We have thus deduced Theorem 5.1 from the properties G I - G 3  of a 
partition G. Hereafter we call such a partition the Marker sieve. It is 
actually a simpler but more efficient version of a Marke r  sieve constructed 
in ref. 8. From now on we forget about the functions f and g and focus on 
the construction of the Markov sieve G. 

We begin with some preliminary considerations of the evolution of 
parallelograms. Let A, B be two parallelograms. Define two integer 
functions k~,e(x) on A as k~,~(x)=min{k >>. l: T~xe~(T~AcnB)} and 
k~,B(x) = rain { k/> 1: T kx e N ( T -  hA c~ B) }. Next define two transforma- 

+ . tions TZB. A --* B as 

T~,B(X ) = Tk~,D(X)(x) 

The following two propositions are the main tools in our proof of 
Theorem 5.1. 

Proposition 5.2 (Bound for irregular parts). For any two maximal 
parallelograms A, B one has rn(J(TkA c~ B)) <<. C2;t~ kl, where C2 > 0 and 
22 e (0, 1) are constants determined by the map 7". 

Remark. The mixing property of T implies that rn(T*Ac~B) --, 
m(A)m(B) as k--* +oo. Proposition 5.2 tells us that the intersection 
TkA tn B consists mostly of parallelograms, u-inscribed in B for k > 0 or 
s-inscribed in B for k < 0. 

Due to Proposition 5.2, the functions k~,B(x ) are almost surely finite. 
We thus can define two probability distributions p~,8(k)=rn{xeA: 
k~,B(x ) = k}/m(A). 

Proposition 5.3 (Tail bound for time distribution). For  any two 
maximal parallelograms A, B and k~>l one has p+B(k)<~C32~/m(A), 
where C 3 > 0  and 23e(0  , 1) are determined by the map T and the 
parallelogram B. 

The proofs of Propositions 5.2 and 5.3 are supplied in Appendices A 
and B, respectively. 

Proof of Theorem 5. 1 from Propositions 5.2 and 5.3. Let n >~ 1 be 
- ~ "  where 24 e (0, 1) is specified below. sufficiently large integer. Set e - x  4, 

Consider a pre-Markov partition ~--~1(~).  For  every quadrilateral Q e ~ 
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consider the maximal parallelogram A =A(Q)  with the support Q. It is 
said to be ample if m(A) >~ (I - x / e )  m(Q). Let A1, A2 ..... Az be all the 
ample parallelograms resulting from 31. Denote also A 0 = M \ U A i .  

I . e m m a  5.4 (Bound for the measure of marginal set). m(Ao)<~ 
c o n s t  - N/-~. 

ProoL First, the union of all the elements Q ~ I  which are not 
quadrilaterals has the measure~<const.e. Next, if a point x ~ Q  of a 
quadrilateral Q e ~1 does not belong to A(Q), then either 7U(x) or 7"(x) has 
to be too short: it does not meet one of two s-sides or, resp., u-sides of Q. 
Applying Proposition 3.4 gives the bound for the measure of the set formed 
by such points as const.e.  | 

Lemma5.4 ensures that the partition G={Ao,  AI,...,Az} has the 
properties G1, G2. Now we have to prove the property G3. 

Fix any quadrilateral Q from a pre-Markov partition ~(e0) for some 
e0>0  such that the maximal parallelogram A = A ( Q )  has a nonzero 
measure. 

komrna  5.5 (Exponential mixing for a fixed parallelogram). For  
every integer k one has m(~(TkAc~A))>~m(A)2(1-C52~kl) for some 
constants C5 > 0 and 25 e (0, 1) determined by A. 

ProoL Let k>~ 1 [in the case k ~ < - 1  one should observe that 
m(Yf( T~A ~ A ) ) = m(~l( T-kA c~ A ) ) ]. Define a probabilistic model that is 
similar to a random walk. Set Pk = m ( ~ ( T  ~A c~ A))/m(A) ("the probability 
of a return at the kth step") and q k = m { x ~ A "  k] ,a (x )=k} /m(A)  ("the 
probability of the first return at the kth step"). Next take a point x e A and 
denote 

y = T~J,A~X)x 

Consider k~=min{k>k+,A(x):  T k x e N ( T k A ~ A ) } .  It is easy to check 
that k l = k + A ( x ) +  + , k A , A ( y  ). This enables us to write the following impor- 
tant relation (the convolution law): 

Pk=qk +qk--lPl + "'" +qlPk--1 (5.2) 

The rest of the proof of lemma uses quite standard methods from the 
theory of recurrent events and random walks. Consider the generating 
functions P(z) = 1 + 52~ pkz ~ and Q(z) = Z ~  qk zg of a complex variable z. 
Equation (5.2) is then equivalent to 

1 
/ '(z) - - -  (5.3) 

1 - Q ( z )  
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Proposition 5.3 implies that S ~  qk = 1 and q~ ~< C6J~6 k for s o m e  C 62> O and 
.~6 ~ (0, 1) determined by A. The function Q(z) is therefore analytic in the 
open disk [z[ <261.  Obviously, Q(1)= 1 and [Q(z)l < 1 for all z, [z[ < 1. In 
virtue of the mixing property of T the set of integers {k} for which qk > 0 
is aperiodic (has no common divisors except for unity), and thus Q(z) r 1 
for all z, [z[ = 1 except for z = 1 (compare these reasonings to the study of 
the spectral properties of the Perron-Frobenius operator for interval maps 
in ref. 27: the mixing property was used there to rule out all the eigenvalues 
lying on the unit circle except for unity itself). Since Q(z) is analytic on the 
unit circle, the equation Q(z)= 1 has a unique root z = 1 in an open disk 
[z[ < r  for some r >  1. Therefore the function D(z)=  ( z - 1 ) [ Q ( z ) - 1 ]  -1 is 
also analytic in the open disk ]zl < r. Equation (5.3) can be now rewritten 
as 

D(z) (5.4) 
P(z) - 1 - z 

Let D(z)= do + dlZ + d2z2 + . . .  denote the Taylor series expansion of 
D(z); then p k = d o + d l +  ...  +dk in virtue of the formula (5.4). The 
analyticity of D(z) in the open disk ]zi < r implies that Idk] < const, r~ k for 
some rl, l < r l < r .  Therefore, the sequence {Pk} is convergent and 
converges exponentially fast. On the other hand, Proposition 5.2 along 
with the mixing property of T shows that Pk ~ m(A) as k ~ oo. Lemma is 
proven. | 

We now return to the proof of the property G3. Note that the only 
essential difference between the property G3 and Lemma 5.5 is that the 
constant C1 and 21 are independent of Ai, Aje Gn and of the value of n. 

Fix a parallelogram A satisfying the conditions of Lemma 5.5. Our 
idea now is to transform the parallelogram Ai (Aj) into A by the map Tj) A 
(TARA) and then deduce the property G3 from Lemma 5.5. 

Partition the parallelogram A/ into s-inscribed subparallelograms 
Ail, Ai2 .... such that on each Aip the function k~iA(X ) is constant ( = k ~ )  
and 

k § T 'pAip = Bip 

is a parallelogram u-inscribed in A. Likewise, let Aj = A jl ~ A j2 w .... so that 
on each Ajq the function k~A (x) is constant (=  k~)  and 

Tk;~ Ajq = ~jq 

is s-inscribed in A. 
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Obviously, 

m(TnAi ~ Aj) = 2 m(TnAip n Ajp) = ~ m(TnpqBip ~ Bjq) 
P,q P,q 

where n p q = n - k ~ p - k f q .  Applying the formula (4.1) and then using 
Lemma 5.5 gives that for each p, q ~> 1 such that rlpq > 0 

m( Tn A ip ~ A jq ) = m( Tnpq B ip ~ B jq ) 

>~ m( ~ (  T"pq A ~ A 
m(A) 2 )) m(Bip) m(njq )  

> m(Ae,,) m(Ajq)(1 - C52~ ",ql) (5.5) 

For each pair p, q such that kip <~ n/3 and kjq <~ n/3 we have i'lpq >~ n/3. The 
union of Aip (Ajq) o v e r  all p (q) such that kip >n/3 (kip >n/3)  has the 
measure less than C3)~'~/3 due to Proposition5.3. Summing up the 
inequality (5.5) over p, q thus gives 

m(T"Ai  n A j) >1 [m(A i) -- C3 ,~/3"] [m(Aj) - C 325/3 ] (1 - C s 2~/3) 

Finally, observe that m(A)>~const .2]" for every parallelogram A E G (to 
ensure that, we had introduced the notion of ample parallelograms). 
We now complete the construction of the Markov sieve G by setting 
24= (23/25) 1/6 and 21 = max{),4, 2~/3}. It is then easy to check that all the 
properties G1-G3 hold. 

Theorem 5.1 is proven. 

6. C E N T R A L  L IMIT  T H E O R E M  

Let H* be a class of piecewise H61der continuous functions on M 
introduced in the preceding section. 

T h e o r e m  6.1 (Central limit theorem). For any real-valued f e l l *  
the sum 

as= ~ [ ( f ( T " x ) f ( x ) ) - ( f ) 2 ]  (6.1) 

is finite. In case a # 0 the sequence 

S n - n ' ( f >  
(no2)'/2 

where S, = f ( x )  + f ( T x )  + ...  + f ( T  n- ix), converges in distribution with 
respect to the measure m, as n ~ ~ ,  to the standard normal law. 
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The convergence of the series in (6.1) immediately results from 
Theorem 5.1. The proof of Theorem 6.1 relies heavily on a fast decay of 
correlations. The proof has been carried out in full detail for billiard 
systems in ref. 8. The arguments of ref. 8 are quite general and do not 
involve any specific feature of billiards, so that we do not need to 
reproduce that proof here. Note that in the case of one-dimensional maps 
the central limit theorem can be deduced directly from the spectral proper- 
ties of the PerronFrobenius operator (see, e.g., ref. 27). 

Remark. As in the case of billiards, the sum (6.1) is zero if and only 
if the function f (x)  is coboundary, i.e., f ( x ) =  g(Tx) -g(x)  a.e. with a 
function g E L2(M, m). 

7. OPEN Q U E S T I O N S ,  D I S C U S S I O N  

1. Having proven the exponential decay of correlations for piecewise 
linear hyperbolic maps of the 2-torus, we should try to extend our result 
to nonlinear maps, like Anosov systems (with additional singularities) or 
billiards. Apparently, such an extension needs a good approximation of the 
nonlinear dynamics by a "locally linear" one. In fact, an approximation of 
that type has been used in ref. 8. 

2. We should also try to extend our results to multidimensional 
hyperbolic toral automorphisms with singularities. However, an explicit 
geometrical construction of a pre-Markov partition is no longer possible in 
higher dimensions. The difficulties, with a "nonsmooth boundary" arising 
there were first noticed and described in ref. 3. Besides, our definition of the 
pre-Markov partition no longer works in that case. Another approach for 
the construction of Markov partitions for multidimensional systems with 
singularities has been developed in ref. 18, based on Bowen's shadowing 
property.(21 

3. L.-S. Young (private communication) has pointed out that 
Theorem 5.1 could be proven by an alternative method. This consists in 
reducing our system to a one-dimensional map with the help of the 
Markov partition, provided certain metric properties of that partition (like 
our Lemma B.1) have been proven in advance. 

A P P E N D I X  A 

The proof of Proposition 5.2 involves simple geometrical construc- 
tions, in which we omit routine details. 

By Lemma 4.2 it is enough to consider only the irregular part 
J(TnQ(A) c~ Q(B)). This part consists of curvilinear polygons adjacent to 
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Sl,n and at most four quadrilaterals (see Section 4). Since the s-sides of the 
latter are less than const. 2 ", their union has the measure <const .  )~". 

Next, fix an I e [1, n] and consider the above curvilinear polygons that 
are adjacent to St. Their images under T - t+ l  are adjacent to S+ and 
disjoint. Since the width of each of those images in the u-direction is 
smaller than const. 2 t, their union has the measure less than const. 2 t, too. 

Now discard all polygons Pc J(TnQ(A)~ Q(B)) which do not inter- 
sect B. After that, each of remaining polygons contains an LUM inscribed 
in Q(B). Furthermore, if a polygon P of that type is adjacent to St, then 
it contains an LUM v"(P) u-inscribed in Q(B) and also adjacent to St. Two 
possibilities arise: (i) V~(P) terminates at a point of intersection of St with 
an s-side of Q(B) or (ii) two smooth curves of St have a common endpoint 
in vu(p). It is easy to see that the number of points listed above is less than 
four times the number of smooth curves in St, which is, in turn, less 
than Ato, where A0 is a constant determined by the map T. Finally, observe 
that the width of any polygon of that type in the s-direction is less than 
const. 2 n. The above considerations lead to the inequality 

m(J(T"A nB))<<, const'()~n + ~ min{2t, A~2n}) 
l = ]  

which, in turn, yields Proposition 5.2. 

A P P E N D I X  B 

The proof of Proposition 5.3 is based on several lemmas. The first one 
describes "gaps" in a maximal parallelogram. 

Let A be a maximal parallelogram. Draw all the line segments inside 
Q(A) parallel to E u, terminating at s-sides of Q(A) and intersecting the set 
$1,o~ (note: these are not LUMs, since they cross the singularity set). They 
form a countable union of strips inside Q(A) called here u-gaps. In a 
similar way we define s-gaps in Q(A). Note that removing all the u-gaps 
and s-gaps from the quadrilateral Q=Q(A) yields exactly the original 
parallelogram A. 

kemma B.1 (Distribution of widths of gaps). Let A be a maximal 
parallelogram and ~> 0. Then the union of all the gaps in A whose width 
is less than e has the measure less than Ce a, where a > 0  is a constant 
determined by T and C > 0 depends on A. 

Proof. Let H be a u-gap with a curve belonging to St inside, for some 
l>/0. Recall that the minimum angle between E" and any curve in S+ is 
~min. Hence the minimum angle between E" and any curve in St is not less 
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than ~rnin). 2l-2. The width of H is therefore greater than C~Z 2r for some 
C1 = CI (A)>0 .  It is thus enough to consider the values l~> - C 2  In e only 
[here C2 = C2(A)> 0 is another constant].  The set T-t+~H is adjacent to 
S+ and its width in the u-direction is less than const.  2( The total measure 
of all u-gaps (for a fixed l) is then less than const.  )J. Summing up these 
bounds over all 1/> - C 2  In e results in the lemma. | 

The next three lemmas describe the evolution of an LUM under T n, 
n >/1. All the statements below have dual forms for the evolution of an 
LSM under T ' ,  n ~< -1 .  

Let 7" be an LUM and p be its length. For any n >~ 1 its image Tn7 u 
is a finite union of LUMs called here components. For every D > 0 denote 
y,~(D) = {x e 7u: for every l = l(x)~ [0, n] the component of Tt7 u containing 
the point Ttx is less than D}. In other words, 7~(D) consists of points 
whose consecutive images never appear in long components during the first 
n iterates of T. 

k e m m a  B.2 (From short to long components). There are D > 0 ,  
C > O and/~ E (0, 1) all determined by T such that ml(7~(D))~< C/~" for any 
n 7> 1 and any LUM 7 u of length p. 

In a sense, Lemma B.2 gives an exact expression of the general fact 
mentioned in the Introduction that the hyperbolicity prevails over 
singularities. Indeed, if 7 u is very short, then typical components of T"7 ~ 
become long (recover) after about - c o n s t .  in m1(7 u) iterates of T, just as 
in the case of a smooth, uniformly hyperbolic map To the image Tgy u itself 
recovers after the same number of iterates of To. 

Next consider an LUM 7u of length p and a quadrilateral Q such that 
m(A(Q)) > 0. For  every n >/1 denote by 7~,(Q) the union of all subintervals 
in 7~,(Q) whose images under T" are LUMs inscribed in Q. 

L e m m a  B.3 (From long components into a fixed quadrilateral). 
For every p > 0  and Q such that m(A(Q))>O there are n 0 > 0  and ~ 0 > 0  
such that m~(y~(Q))>1 r for every LUM 7 u of length p and every n >~ no. 

Lemma B.3 is, of course, interesting for p sufficiently large, in 
particular, for p = D. We stress that the values of no and ~o here depend on 
p =ml(y~), but not on y~ itself; thus the bound in Lemma B.3 is uniform 
in all sufficiently long LUMs. 

The proofs of Lemmas B.2 and B.3 are essentially the same as in the 
case of billiards. ~8'6) Here we outline only the ideas of those proofs. 

Proof of Lemma 8.2. Due to the property $4, for any m ~> 1 there is 
5,, > 0 such that any smooth curve of length ~rn in M intersects at most 
Kom curves of S . . . .  . Hence the image T'~7 u contains at most Kom + 1 

822/69/1-2-9 
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components, provided the LUM y" is less than era. Fix a k ~> 1 and then 
count the components of mk T y,(Q). Their number is less than (Kom+ 1) k, 
and so their images under T -ink form a union of subintervals in y" whose 
total ml-measurc is less than (Kom + 1)k2m%m. If m is large enough, then 
(Kom+ 1)l/m<• -1/2 and the lemma follows. I 

Proof of Lemma B.3. Choose a maximal parallelogram B, m(B) > O, 
such that 7" intersects both s-sides of Q(B). The existence of such a 
parallelogram follows from certain ergodic properties of the system under 
consideration; see ref. 8 for explanations. The mixing property of T 
and Proposition5.2 imply that m(Yt(TnBnA))>m(B)m(A)/2 for all 
n>>.no(Q,B), where A=A(Q). The set ~(TnBc~A) consists of sub- 
parallelograms u-inscribed in A. Each has the measure <const .2" ,  and 
so their number must be greater than const.Anm(B)m(A). Hence 
mx(7,~(Q) ) >/const. m(B)m(A) as soon as n >~ no(Q, B). 

In order to make the last bound independent of B, we observe that the 
set of LUMs with the length >~p is compact (in C o topology). There is 
therefore a finite collection of maximal parallelograms {Bi} such that each 
of those LUMs intersects at least one of the parallelograms {Bi} in the way 
specified above (cf. also ref. 8 for more detail). ] 

Observe now that if Tn7 u contains an LUM 7~ inscribed in Q, then a 
certain portion of that LUM lies in A = A(Q). However, it is important to 
describe the further evolution of the remaining portion of ~u which has 
fallen into s-gaps of A. Denote ~u= 7~\A. 

For every n/> 0 the image Tn~7 u is a countable union of LUMs which 
we call here components of second type to distinguish them from the com- 
ponents defined above. For every D > 0 denote ~ ( D ) =  {x e ~": for every 
le  [1, n] the component of second type of T~ u containing the point T~x is 
less than D}. 

I . e mma  B.4 (From gaps to long components). There are C > 0  and 
~e  (0, 1) determined by T such that ml(~(D))<~ C[J" for every n >~ 1. Here 
D > 0 is the same as that involved in Lemma B.2. 

Proof. Denote by Pl, P2,... the lengths of the subintervals in 7~ of 
which the set ~" consists. To each of those subintervals we apply 
Lemma B.2, and so we obtain 

ml(~(D)) ~ ~" min{pi, Cfl"} 
i 

Using Lemma B.1 yields two bounds: 

pi<C~+~176176 (B.1) 
i: Pi < C f l  n 
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and 

"c#"-#-"c'+~ 
~, Cfl l (B.2) 

i: c f l l  ~ pi < Gil l - [  

for every l=0,1, . . . ,n .  Adding the inequalities (B.1) and (B.2) for 
l =  0, 1,..., n results in 

Z min{pi, Cfl n } ~< f l - "C '  +"(2 + n)fl a" 
i 

that completes the proof. | 

Remark. The value D involved in Lemmas B.2 and B.4 can be 
chosen as small as necessary. We can therefore assume that D is less than 
the sum of widths of s-gaps in A. Furthermore, we assume that C/> C and 

Consider a special evolution T* of an LUM 7 u with "absorbing" 
property of the parallelogram A = A(Q). As soon as a component 7~ of 
T"~'" intersects both s-sides of Q, the points of 7~ c~ A stop, and only the 
remaining portion of ~ ,  i.e., 7~\A, keeps moving under T. After n iterates 
of T*, a part of 7" has been already "stuck" with the parallelogram A, 
while the remaining part is still moving. We denote the part of 7 u which is 
moving during the first n iterates of T* by ~"(n). Its image T"~TU(n) is a 
countable union of LUMs which we call components o f  third type. 

ke rnma  B.5 (Absorption). For any LUM 7 ~ and any n~> 1 one 
has ml(~"(n))<~Clfl~ where C I > 0  and f l ~ ( 0 ,  1) are constants, both 
depending on the absorbent A alone. 

Proof. By Lemma B.2, m~(7]/2(D)) <<. C[3 ~/2. We can therefore neglect 
, ~, u D the subset 7,/2(D) of 7". The images of points x~7  (n) \7~/2()  appear in 

components of length >~D at least once during the first n/2 iterates of T. 
It is thus enough to prove Lemma B.5 for the case m~(7") = D only. 

Let now ml(~")=D.  For any x~7"  denote r (x )=  # { l ~  [1, n]: the 
point T% belongs to a component of third type of length >D}. 

S u b l e m m a  B.6. There are C2>0,  ~2>0, and /~2~(0,1), all 
determined by T and Q, such that ml{x~7~: r(x)<c%n} <<. C2fl~. 

Proof. Let r < n  and 0 ~ < n l < n 2 <  .--<n~<~n. Denote by 
7~(n, ..... n~) a subset of 7" consisting of points x for which r(x) = r and 
T"lx ..... T"~x belong to components of third type of length ~>D. Lemmas 
B.2 and B.4 enable us to prove that 

e / ~ r l l  - 1 e j ~ n 2  - n 1 - 1  e l ~ n - - r t r  - I  

m,(7,"(n, ..... n~)) ~< m,(7 ~) - -  
D D D 

= ml(7")(C/fl)rfl" 
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Hence 

n! ~n 
ml{x�9 r(x)=r} ~<m1(7") r! (n--r)! 

If r < an with some e < 1/2, then the last bound can be rewritten as 

m~ {x �9 v": r(x)= r} ~< const [ ~ ( 1 - e ) ~ - ~ J  

For ~ small enough the constant within the brackets is less than 1. | 

Sublemma B.6 allows us to disregard, along with 7~(D), also the 
subset {x �9  7": r(x)< ~2n}. All the other points of ~"(n), in evolution under 
T*, appear in long components of third type at least e2n times during the 
first n iterates of T*. Any of those components sends a fixed portion of its 
measure (to be precise, [~o/D) into the absorbent A within no subsequent 
iterates of T* by virtue of Lemma B.3 with p = D. 

In terms of probability theory, a point x in question has a chance of 
being stuck with A during its evolution e2n times in succession. It is now 
clear that the probability of x not being stuck with A within the first n 
iterates of T* is less than (1--flo/D) ~2n, so that we come to the desired 
bound in Lemma B.5. | 

Remark. Minor modifications of the above arguments are needed to 
obtain the same bound as in Lemma B.5 for another special evolution T** 
of 7", where the absorption into A takes place only after the (n/2)th iterate 
of T, while within the first (n/2) iterates the maps T** and T coincide. 

We now finish the proof of Proposition 5.3. For each x � 9  A denote 
i(x, k) = min{i>~k/2: Tix�9 B and the component of Ti(y"(x) ~ Q(A)) 
containing x intersects both s-sides of Q(B)}. Let N(A) be a subset of 
points x �9 A such that T~(X'k)x�9 N(TS(X'~)A n B). It is easily seen that 

m{x�9  k~,s(x)>~k} <~m{x�9 i(x, k)>~k} +m(A\N(A)) 

By Proposition 5.2, 

m(A\~(A)) <~ ~ m(J(TeA c~ B)) <<. const. 2~/2 
k/2 

On the other hand, Lemma B.5, along with the remark thereto, gives 
the bound m{x �9 A: i(x, k) i> k} ~< C1/?~. This completes the proof of 
Proposition 5.3. 
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APPENDIX C 

The construction of the pre-Markov partition ~o is accomplished in 
three steps. 

1. Let m >~ 1 be a sufficiently large integer to be specified below and 
t > 0 be a sufficiently small real. First, recall that by the property $4 for 
any m ~> 1 there is an t0 = t0(m) such that any t0-disk in M intersects at 
most Kom curves of S . . . .  �9 

Choose a finite (t/10)-net {x + }, 1 ~<i~< I~,  in the set M\U~(SI,m) and 
a finite (e/10)-net {x C }, 1 ~< i<~I o, in the set M\U=(S_m_I),  where U=(A) 
stands here for the e-neighborhood of the subset A c M. Through every 
point x +, 1 ~< i~< I~,  draw a line segment ii  + of length t, parallel to E u, 
and bisected by x +. Consider two subsegments of i + adjacent to its 
endpoints, both of length e/10. For  ~ small enough these two segments 
intersect at most Kom curves of S-m. 1" Hence each of them contains a 
smaller subsegment of length (200 Kom)- i t  which lie outside Uc~(g_m,_ 1), 
where c=( lOOKom)-L  For each of these smaller segments construct a 
rhombus with sides parallel to E u and E = and with this subsegment as a 
side. Having constructed two rhombi, we erase two parts of i + beyond the 
two most distant vertices of the rhombi. The remaining part of i + and six 
other sides of two rhombi form a figure called here a flag; see Fig. 2. 
A similar flag also should be constructed for each i 7 ,  1 <~ i ~< I 0 . 

Denote by 7 +, 1 ~< i ~< I +, and 77, 1 ~< i ~< I - ,  all the segments resulting 
from the above construction and parallel to E = and E =, respectively. These 
include the remaining parts of i + and the sides of all the rhombi not lying 
on i +. Note that I + = 3I~- + 41 o and I -  = 31 o + 4I~. 

2. Take any 7Z, 1 <~i<<.I-. Its image Tmyi is a segment parallel to 
E = with the length -..<t)~ m. Draw two segments of length 100 Komt, parallel 
to E u, and bisected by the endpoints of TmT~. For  t small enough those 
segments intersect at most Kom curves of S . . . .  1, so that they lie mostly 

Fig. 2. A flag on a segment 47+. 
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outside U~(S m,- 1)' There is, therefore, a point xj- in the above net at a 
distance ~<e/10 to one of those segments, and so the segment i 7  crosses 
both of them. Denote by 77 a part of 97 confined between those two 
segments. 

Recall that the endpoints of 77 belong to two segments 7p, 7 + for 
some l<<,p<q<~I +. Suppose now that m is so large that, say, 
(1000Kom) 2>2m. The image T mffj-- is then a segment lying at a 
distance <e/100 to 77 and also terminating at 7e +, 7~- or at least at its 
prolongations beyond the endpoints of 77. Now replace 7~ by T-m~j and 
adjust the segments ~- ,  7+ so that the endpoints of T-" '77 will belong to 
these segments again [this may require either shortening or lengthening of 
a segments 77, 7q ~, changing their lengths by less than (2000 Kom) ~]. 

Next repeat the same procedure with each 77, 1 ~ i ~< I - ,  and, likewise, 
with each 7~ +, 1 ~< i~< I +. We thus obtain new segments denoted by 7i71, 
1 ~ i ~ I - ,  and 7e+l, 1 <~i~I +. They form similar flags to those at step 1. 
Important relations here a r e  zm(u ~i, 1) C2 U T / ~  and T-m(u ;i,+1) C U 3)+" 
These imply, in particular, that none of ~ + ~,~ (7,71) intersects $1 2m (resp., 
S 2m, -- 1)" 

We proceed by replacing the system 7~ with a new one 7~+2 in a 
similar fashion, and so on. The distances between 7i+k and 7~_k+~+ decrease 
exponentially in k for each i, so that a limit segment 7~7~+ = lim 7~,k • is well 
defined for each i. The segments + 7~7~ form similar flags again. Since 7~+k do 
not intersect S~.+_(k+~)m, the segments + 7i_oo do not intersect S~.~, and so 

+ 7~,~ are LUMs and 7 ~  are LSMs. Furthermore, Tm(U 7~ ,~)c (U ~,~o) 
and T " (U 7 + )  c (U 7~,+) - 

3. Finally, replace the above segments 7i+oo by their images T+7 +m. 
They form a collection of LUMs ~+, 1 ~< i ~< 7 ~;, and LSMs 7F, 1 ~ i ~< I - .  
These segments together with the curves of S . . . .  split M into a finite 
number of domains, i.e., components of connectedness of the set 
M \ [ ( U  ~7/+ ) ~ (U ~/- ) u S . . . .  ]. This gives the required pre-Markov 
partition ~o = ~o(e). 

The properties P1, P2 obviously hold. To deduce the property P3, 
,~ _ (T-my+ observe that each segment T 7i, oo , i.~) lies strictly inside another 

segment 7j,~ (resp., 7j.~+ ). Consequently, each segment y+ (~7~) terminates 
either at Sl,m (S_m, ~) or at an interior point of another segment ~Tp- (Tp+), 
so that the property P3 follows. 

A part of the property P4, namely, the upper bound for the sides of 
the polygons P c { o ,  readily results from our construction. The lower 
bound can be accomplished by a slightly more careful choice of the (e/10)- 
nets and the sides of rhombi at step 1. We omit the details. Note that we 
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could, alternatively, relax from the lower bound in the property P4 and 
instead remove a certain number of too short quadrilaterals P e ~1 in the 
construction of the Markov sieve in Section 6. 
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NOTE ADDED IN PROOF 

When this paper was in press, L. S. Young pointed out a gap in the 
proof of Lemma 5.5. The author thanks her for the remark and anticipates 
submitting an addendum to the proof later. 
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